Pointon *et al.* High-precision U–Pb zircon CA-ID-TIMS dates from western European late Viséan bentonites.

Supplementary Material

Mean Cycle Periodicity Calculations

Mean cycle periodicity values were calculated employing the same methodology as used by Pointon *et al.* (2012) for Namurian to early Westphalian siliciclastic cycles within the Pennine and Ruhr basins of northern England and Germany respectively. This is as follows:

Time duration between bentonites W8 and W13

=	Bentonite W8 weighted mean ²⁰⁶ Pb/ ²³⁸ U date (Ma)	-	Bentonite W13 weighted mean ²⁰⁶ Pb/ ²³⁸ U date (Ma)
=	335.59 Ma - 332.50 Ma		
=	<u>3.09 Ma</u>		

Uncertainty of the time duration between the two bentonites

= $\sqrt{(\text{uncertainty of bentonite W8}^{206}\text{Pb}/^{238}\text{U date})^2 + (\text{uncertainty of bentonite W13}^{206}\text{Pb}/^{238}\text{U date})^2}$

where date uncertainties are at the 95 % confidence level and exclude systematic uncertainties arising from tracer calibration and the ²³⁸U decay constant (i.e. the \pm X uncertainty level of Schoene *et al.* 2006).

$$=\sqrt{(0.19 \text{ Ma})^2 + (0.07 \text{ Ma})^2}$$

 $= \pm 0.20 \text{ Ma}$

Mean cycle periodicity calculation

Mean cycle periodicity (ka / cycle) = $\frac{\text{time duration between bentonites W8 and W13 (ka)}}{\text{number of intervening cycles}}$

The uncertainty of the mean cycle periodicity estimate arising from uncertainties in the time duration (ka) is:

$$= \left(\frac{1}{\text{number of cycles}}\right) \times \text{uncertainty in time duration (ka)}$$

These calculations are repeated for the minimum and maximum number of intervening cycles between bentonites W8 and W13 (25.5 and 28.5 cycles respectively; Table S1).

Number of sedimentary cycles	Time duration (Ma)	Uncertainty in time duration (± Ma; 95% confidence)	Mean periodicity (ka / cycle)	Uncertainty in mean periodicity (± ka / cycle)		
Between bentonites W8 and W13						
25.5	3.09	0.20	121	8		
28.5	3.09	0.20	108	7		

Table S1. *Mean periodicity estimates for early Warnantian sedimentary cycles calculated using the new U–Pb zircon CA-ID-TIMS dates from bentonites W8 and W13*

References

Pointon, M. A., Chew, D. M., Ovtcharova, M., Sevastopulo, G. D. & Crowley, Q. G. 2012. New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correlation. *Journal of the Geological Society*, **169**, 713-721, DOI: 10.1144/jgs2011-092.

Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. & Bowring, S. A. 2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. *Geochimica et Cosmochimica Acta*, **70**, 426-445, DOI: 10.1016/j.gca.2005.09.007.