

Investigating LNAPL drop hysteresis; Implications for residualisation and source zone assessment

JOHN HENEGHAN & RYAN WILSON GPRG, KROTO RESEARCH INSTITUTE, UNIVERSITY OF SHEFFIELD, S3 7HQ j.heneghan@sheffield.ac.uk

Introduction

- Light non-aqueous phase liquids (LNAPLs) are frequently a source of persistent, difficult to remediate contaminants in aquifers.
- •LNAPLs are characterised by their immiscibility with water, a specific gravity less than one and typically high toxicity.
- •LNAPLs do not fully drain from porous media, even under high capillary pressures (Figure 1).
- •The difference in imbibition and draining in Figure 1 is a consequence of differences in wetting behaviour.

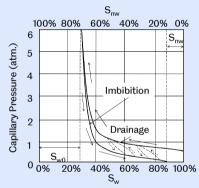


Figure 1 – Idealised capillary pressure/saturation curve for two immiscible fluids in a porous media, showing differences in imbibing and draining saturation states.

NAPL Wetting

- •The process of residualisation ($S_{\rm nw}$ in Figure 1) is controlled in part by the NAPL wetting characteristics.
- •Understanding NAPL wetting behaviour in specific porous media will help in the conceptualisation of a residual NAPL source zone.
- •Understanding of source zone wetting characteristics will help in the design of remedial schemes such as free phase recovery by water flooding.

Wetting and Contact Angle

- •The most common determinant of wetting is through the measurement of a static drop contact angle on a representative surface.
- •Static contact angles only provide information on a system that is at equilibrium (i.e. neither imbibing or draining).
- •In order to employ contact angle as a tool for assessing NAPL residualisation, hysteretic contact angles (advancing and receding) are considered to be superior to static values.

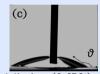


Figure 2 – petrol-water-quartz drop types; (a)-static drop (θ =97.8°), (b)-dynamic advancing drop (θ =103°), (c)-dynamic receding drop (θ =156.8°)

•The drop examples shown in Figure 2 can be considered as analogous to a water flood scenario (b) and water drainage by petrol invasion (c).

Results

•Experimental work has demonstrated that significant variation exists between advancing and receding contact angles both on and between a variety of mineral surfaces studied (Table 1).

Mineral phase	Static contact angle (3)	Max. advancing angle (ϑ_a)	Min. receding angle (ϑ_r)
Quartz	98°	103°	157°
Haematite	94°	86°	128°
Calcite	71°	66°	134°

Table 1 – Petrol-water contact angles recorded in static and dynamic drop experiments (petrol is bulk liquid phase)

Implications

- •Contact angle should be evaluated with respect to variation in mineralogy of porous media.
- •The measurement of significant contact angle hysteresis questions the value of static contact angle measurements.
- •In order to increase the accuracy of site conceptualisation and risk assessment, or the design efficiency of NAPL source zone remediation, wetting behaviour should be investigated.
- •Contact angle should be considered as a dynamic variable and should be measured as such.

Summary

- •NAPL wetting behaviour acts as a control on residual formation.
- •Wetting is commonly measured by static contact angle.
- •Hysteresis between advancing (invading) and receding (draining) drops can be significant, with the degree of hysteresis varying between mineral surfaces

Future work

- Possible future work includes;
- •Investigating the effect of altering surface charge on LNAPL contact angle to improve free product recovery and reduce the percentage of residualised NAPL volume.
- •Bench scale core saturation-drainage work to assess mineralogical affects on residualisation in aquifer samples

References

•Pinder, George, F & Gray, William, G. Essentials of Multiphase Flow and Transport in Porous Media. 257pp, John Wiley and Sons, Inc., New Jersey, 2008